Penerapanturunan dalam optimasi di bidang ekonomi klik di sini File presentasi. Soal-soal berikut dikumpulkan dari berbagai sumber kemudian penulis rangkum pada pos ini. 10 10 3 10 3010 100 100. Teorema limit utama contoh soal cara mengerjakan limit fungsi yang tidak terdefinisi.
ContohSoal Laba Maksimum Matematika Ekonomi 17 July 2022; Contoh Soal Pohon Keputusan 17 July 2022; Contoh Soal Integral Lipat Dua Dan Penyelesaiannya 16 July 2022; Home / Matthijs Kapers 1 / Contoh Soal Penerapan Limit Dalam Ekonomi Dan Bisnis. Contoh Soal Penerapan Limit Dalam Ekonomi Dan Bisnis.
mencarinilai marginal menggunakan data total bisa dengan konsep turunanmusicTrack : Hawaiian Weekend - Igor KhaiskyiWatch :
Nama: Yunita Setya NingrumKelas : XI MIPA 5No : 36 Tugas : MTK Wajib (Turunan Fungsi Aljabar)
Vay Tiền Trả Góp 24 Tháng. Download Skip this Video Loading SlideShow in 5 Seconds.. APLIKASI TURUNAN DALAM EKONOMI DAN BISNIS PowerPoint Presentation APLIKASI TURUNAN DALAM EKONOMI DAN BISNIS. PENDAHULUAN. Turunan derivative membahas tentang tingkat perubahan suatu fungsi sehubungan dengan perubahan kecil dalam variabel bebas fungsi yang bersangkutan . Dengan turunan dapat pula disidik kedudukan-kedudukan khusus dari fungsi. Uploaded on Aug 30, 2014 Download PresentationAPLIKASI TURUNAN DALAM EKONOMI DAN BISNIS - - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - - Presentation Transcript APLIKASI TURUNAN DALAM EKONOMI DAN BISNISPENDAHULUAN • Turunan derivative membahastentangtingkatperubahansuatufungsisehubungandenganperubahankecildalamvariabelbebasfungsi yang bersangkutan. Denganturunandapat pula disidikkedudukan-kedudukankhususdarifungsi. Berdasarkanmanfaat-manfaatnyainilahkonsepturunanmenjadisalahsatualatanalisis yang sangatpentingdalamekonomidanbisnis. • Sebagaimanadiketahui, analisisdalamekonomidanbisnissangatakrabdenganmasalahperubahan, penentuantingkatmaksimumdantingkat konsepnilai marginal dankonsepoptimisasi. • Dalamkaitannyadengankonsepnilai marginal dannilaioptimisasi, akandibahaspenerapanturunandalampembentukanfungsiatauperhitungannilai marginal dariberbagaivariabelekonomi, sertapenentuannilai optimum darifungsiatauvariabel yang bersangkutan. KonsepDasar • Biaya Total Total Cost • Seluruhbiaya yang dikeluarkanuntukmenghasilkansejumlahbarang. • Biaya Total terdiridari • BiayaTetap Fixed Cost • Biaya yang besarnyatidakberubahsekalipunjumlahproduksiberubah. • BiayaVariabel Variable Cost • Biaya yang besarnyaberubah-ubahsesuaidenganjumlahproduksi yang dihasilkan. • Jadi TC = FC + VCFungsiBiaya Total mungkinberwujudsebagai • Fungsigarislurus • Biaya Total y = ax + b ; dimana a > 0 dan b ≥ 0 • Biaya rata-rata ŷ = y/x = a + b/x • Biaya Marginal y’ = dy/dx = a fungsikonstanta, artinya berapapunjumlahbarang yang diproduksi, biaya marginal tetapsebesar a • Biaya rata-rata marginal ŷ’ = dŷ/dx = -b/x2Fungsi parabola Kuadrat Y = ax2 + bx + c • Biaya Total y = ax2 + bx + c ; dimana a > 0, b ≥ 0 dan c ≥ 0 • Biaya rata-rata ỳ = y/x = ax + b + c/x • Biaya marginal ỳ = dy/dx = 2ax + b • Biaya rata-rata marginal ỳ’ = dỳ/dy = a – c/x2BiayaMarginal BiayaRata – Rata / Biaya Per Unit. • Tingkat perubahanbiaya total dikarenakanpertambahanproduksisebesar 1 satu unit. • Di dalamkalkulusistilah “marginal” artinyaturunanpertamadariBiaya Total. • Biayatotal dibagidenganjumlahbarang yang diproduksi / dijual. • Syaratuntukbiaya rata-rata minimum • ỳ’ = 0 • ỳ’’ = 0 Catatan Definisidiatasberlakudenganasumsibahwavariabel yang mempengaruhibiayaadalahvariabelkuantitasproduksi/penjualan x, sedangkanvariabellainnyadalamkeadaantidakberubah CaterisParibus.Didalamkonsepbiayainimeskipunberbagaibentukfungsidapatdibuatuntukperhitunganbiaya, akantetapi disini yang berlakuialah yang memenuhipembatasan-pembatasanekonomi, yaitu • Jikatidakadabarang yang diproduksi, makabiaya total total harusnaik/bertambahjika x bertambahsehinggabiaya marginal selalupositif. • Jika x produksibanyaksekali, makakurvabiaya total akanterbukakeatassehingga q’’ > 0CONTOH SOAL • Biaya yang diperlukanuntukmemproduksisuatubarangadalah 3 / unit dan FC = tentukan • Biaya Total sebagaijumlahbarang yang diproduksi. • Biaya Marginal, jikajumlahbarang yang diproduksiadalah 100 unit. • Biaya rata-rata, jikajumlahbarang yang diproduksiadalah 100 unit. • PENYELESAIAN • TC = FC + VC • = + 3x Rupiah • MC = Y’ = 3 • Biaya Rata-rata • Ỳ = Y/x = + 3x / x • = + 3 • Untuk x = 100 • Untuk ỳ = =18LATIHAN SOAL • Jikaharga/unit adalah P = 2x + 2 danbiayatetapadalah 18 dimana x adalahjumlahbarang yang diproduksi. Tentukanbiaya total danbiaya rata-rata minimumnya. • Fungsibiaya total dinyatakandenganpersamaany = x2 + 2x + 10, dimana x menyatakanjumlahbarang. Tentukanbiaya marginal danbiaya rata-rata MANDIRI 2 • Dikumpulkan paling lambat pada saat UAS. Pengumpulan lebih cepat akan diberi tambahan point. • Buat ringkasan dari buku “Aplikasi Matematika untuk Bisnis dan Manajemen” Penulis Haryadi Sarjono dan Lim Sanny; Penerbit Salemba Empat,; 2012-buku ini ada di koleksi perpustakaan STIE Dewantara halaman 158 – 203, kerjakan minimal 1 soal dari setiap Latihan! total ada 4 soal yang harus dikerjakan • Maksimal 10 halaman, DITULIS TANGAN
PENERAPAN TURUNAN PARSIAL DI BIDANG EKONOMI April 8th, 2017 Pada post kali ini akan diberikan beberapa contoh bagaimana turunan parsial diterapkan dalam bidang ekonomi. Menentukan permintaan marjinal Misalkan A dan B merupakan dua buah produk yang memiliki hubungan satu sama lain dalam hal penggunaannya. Misalkan persamaan permintaan A dan B masing-masing adalah qA = fpA,pB dan qB = fpA,pB, dengan pA adalah harga per unit produk A dan pB adalah harga per unit produk B. Maka terdapat empat macam permintaan marjinal masing-masing produk terhadap harga, yaitu Contoh 1 Misalkan permintaan terhadap produk A dan produk B memenuhi persamaan berikut. Tentukan permintaan marjinal A terhadap harga per unit B dan permintaan marjinal B terhadap harga per unit A ketika harga per unit A Rp 0,5 dan harga per unit B Rp 1. Jawab qA = 200 pA-3pB-2 sehingga qB = 400 pA-1pB-3 sehingga Substitusikan pA = 0,5 dan pB = 1 ke dalam kedua turunan partial di atas, diperoleh Jadi, permintaan marjinal A terhadap harga per unit B adalah -50 unit/rupiah dan permintaan marjinal B terhadap harga per unit A adalah -100 unit/rupiah. Menentukan elastisitas permintaan parsial Misalkan A dan B merupakan dua buah produk yang memiliki hubungan satu sama lain dalam hal penggunaannya, entah A dan B ini dua produk yang bersifat komplementer ataupun yang bersifat saling menggantikan substitusi. Misalkan persamaan permintaan A dan B masing-masing adalah qA = fpA,pB dan qB = fpA,pB, dengan pA adalah harga per unit produk A dan pB adalah harga per unit produk B. Elastisitas harga-permintaan dan elastisitas silang-permintaan masing-masing produk didefinisikan sebagai berikut. dengan ηA = elastisitas harga-permintaan produk A ηB = elastisitas harga-permintaan produk B ηAB = elastisitas silang-permintaan produk A terhadap harga produk B ηBA = elastisitas silang-permintaan produk B terhadap harga produk A Jika ηAB > 0 dan ηBA > 0 untuk pA dan pB tertentu maka kedua produk tersebut saling menggantikan. Jika ηAB 0, memeriksa tanda aljabar ηAB dan ηBA dapat dilakukan cukup dengan memeriksa tanda aljabar masing-masing turunan parsial. Perhatikan bahwa Karena kedua turunan parsial tersebut negatif, kita simpulkan A dan B bersifat komplementer. Tautan sementara Latihan Turunan Parsial Latihan Elastisitas Permintaan Latihan Penerapan Turunan Parsial di Bidang Ekonomi Tagging elastisitas harga, elastisitas permintaan, elastisitas silang, permintaan marjinalMost visitors also read Tinggalkan Balasan
MATEMATIKA EKONOMI DAN BISNISAPLIKASI TURUNAN FUNGSI DALAM EKONOMI DAN BISNISOleh Kelompok Bagus Casvo Rico 1807522105 Ayu Trishantika Dewi1807521112 Made Yoga Wiratama Putra1807521115FAKULTAS EKONOMI DAN BISNISUNIVERSITAS UDAYANA2018A. ELASTISITASElastisitas y terhadap x dari fungsi y = fx adalah perbandingan antaraperubahan relative dalam variable terikat y terhadap perubahan relative dalamvariable bebas x. Yang dapat dinyatakan sebagai berikut Elastisitas y terhadap x =perubahan relative dalam variable terikat yperubahan relative dalam variable bebas xEyx= y/yx/x= Elastisitas y terhadap xy = Perubahan variable terikat y yy= Perubahan relatif dalam variable terikat yx= Perubahan variable bebas x xx= Perubahan relatif dalam variable bebas x Busur dan Elastisitas TitikAda dua cara pengukuran elastisitas suatu fungsi yaitu elastisitas busur arcelasticity dan elastisitas titik point elasticity. Elastisitas busur mengukurelastisitas suatu fungsi diantara dua titik sepanjang suatu busur sedangkanelastisitas titik mengukur elastisitas suatu fungsi pada satu titik tertentu.Elastisitas BusurElastisitas y terhadap x di antara dua buah titik sepanjang busur dari fungsi y =fx, dapat dinyatakan oleh E = TitikDengan mengambil harga limit untuk x → 0 dari persamaanelastisitas busur, di dapat elastisitas titik dari y = fx, pada titik x,y seagaiberikut E = Limit y x→0E = Keelastisan Suatu Fungsi Untuk mengetahui sifat keelastisan suatu fungsi dapat dilihat dari harga utlakkoefisien elastisitasnya │E│, sebagai berikut 1Bila│E│= 1, maka fungsi tersebut elastis satuan2Bila│E│> 1, maka fungsi tersebut elastis3Bila│E│< 1, maka fungsi tersebut tidak elastis4Bila│E│= 0, maka fungsi tersebut tidak elastis sempurna5Bila│E│= ∞, maka fungsi tersebut elastis Terhadap Koefisien ElastisitasNilai E yang positif menunjukkan bahwa hubungan antara variable bebas xdengan variable terikat y adalah searah. Sedangkan nilai E yag negative E dengantanda negatif menunjukkan hubungan antara variable bebas x dengan variableterikat y berlawanan arah berbanding terbalik. Interpretasi terhadap nilaielastisitas suatu fungsi y = fx adalah sebagai berikut 1E = k positif k, memiliki arti bahwa bila variable bebas x naik 10%, makavariable terikat y naik sebesar k% ; atau bila variable bebas x turun 1%, makavariable terikat y turun sebesar k%.2E = -k negatif k, memiliki arti bahwa bila variable bebas x naik 1%, makavariable terikat y turun sebesar k% ; atau bila variable bebas x turun 1%, makavariable terikat y naik sebesar k%. Permintaan dan Penawaran1Elastisitas PermintaanElastisitas permintaan terhadap harga dari suatu barang adalahperbandingan antara perubahan relatif kuantitas barang yang diminta olehpembeli konsumen terhadap perubahan relatif harga barang tersebut.
0% found this document useful 0 votes306 views9 pagesDescriptionPenggunaan turunan dalam ekonomiCopyright© © All Rights ReservedAvailable FormatsDOCX, PDF, TXT or read online from ScribdShare this documentDid you find this document useful?0% found this document useful 0 votes306 views9 pagesPenggunaan Turunan Dalam EkonomiJump to Page You are on page 1of 9 You're Reading a Free Preview Pages 5 to 8 are not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
penerapan turunan dalam bidang ekonomi